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We apply the theory developed in quantum cosmology to a model of charged generalized
Brans–Dicke gravity. This is a quantum model of gravitation interacting with a charged
Brans–Dicke type scalar field which is considered in the Pauli frame. The Wheeler–
DeWitt equation describing the evolution of the quantum Universe is solved in the
semiclassical approximation by applying the WKB approximation. The wave function
of the Universe is also obtained by applying both the Vilenkin-like and the Hartle–
Hawking-like boundary conditions. We then make predictions from the wave functions
and infer that the Vilenkin’s boundary condition is more reasonable in the Brans–Dicke
gravity models leading a large vacuum energy density at the beginning of the inflation.
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1. HAMILTONIAN FORMULATION OF CGBD GRAVITY

To start with, consider the original version of the Einstein–Hilbert action for
the Brans–Dicke gravity with a real scalar field

S=
∫

d4x
√−γ

(
8R̃+ ωγ

µν∂µ8∂ν8

8

)
(1.1)

whereγ = detγµν , γµν is the Jordan metric,8 is the Brans–Dicke scalar field,
andω is the dimensionless Brans–Dicke coupling constant. Here we make a trans-
formation for the scalar field,

8 = εϕ2

2
(1.2)

ω = 1

4ε
(1.3)

1 Department of Physics, The Shanghai University, Shanghai, People’s Republic of China.
2 Department of Physics, The University of Hongkong, Hongkong.
3 To whom correspondence should be addressed at Department of Physics, The Shanghai University,
Shanghai 200436, People’s Republic of China; e-mail: alberthqlu@hotmail.com.

939

0020-7748/02/0500-0939/0C© 2002 Plenum Publishing Corporation



P1: GDX

International Journal of Theoretical Physics [ijtp] pp464-ijtp-372237 May 30, 2002 10:32 Style file version May 30th, 2002

940 Lu, Shen, Yang, Lai, and Cheng

Then the Brans–Dicke action (1.1) becomes a form which is more easily handled
afterward

S=
∫

d4x
√−γ

(
εϕ2

2
R̃+ 1

2
γ µν∂µϕ∂νϕ

)
(1.4)

In Cho’s paper (Cho, 1992), the spin-2 massless graviton is represented only
by the Pauli metric. By means of a conformal transformation,gµν = eασ γµν , where
σ is the dilaton scalar field, the fundamental assumption that the gravitational
interactions are generated by the massless spin-2 gravitons and are then realized
in Brans–Dicke gravity.

On the other hand, the Jordan frame formulation of a scalar–tensor theory
is not viable because the energy density of the gravitational scalar field present
in the theory is not bounded from below (violation of the weak energy condition
(Wald, 1984)). The system therefore is unstable and decays toward a lower and
lower energy state ad infinitum (Faraoniet al., 1998; Magnano and Sokolowski,
1994). However, the Pauli metric formulation of scalar–tensor theories is free of
the problem.

The example illustrated in Faraoni and Gunzig (1999) shows, in a staightfor-
ward way, the violation of the weak energy condition by wave-like gravitational
field in Brans–Dicke theory formulated in the Jordan frame, and the viability of the
Pauli frame counterpart of the same theory. The example is not academic, since an
infrared catastrophe for scalar gravitational waves would have many observational
consequences. One example studied in the astronomical literature consists of the
amplification effect induced by scalar–tensor gravitational waves on a light beam,
which differs in the Jordan and in the Pauli frame (Bracco and Teyssandier, 1998;
Faraoni, 1996; Faraoni and Gunzig, 1998). Within the classical context, scalar–
tensor theories must be formulated in the Pauli frame, not in the Jordan one.

In most of the current literature, the matter field is constrained to be real scalar
field with just one degree of freedom. Actually, the standard quantum cosmology as
well as the classical inflationary cosmology is based on the Friedmann cosmology
in the presence of this real scalar fields. However, it is evident that a complex scalar
field has more physical sense because it corresponds to a matter hydrodynamical
field (Khalatnikov, 1992). In a series of papers, Khalatnikov and Mezhlumian
(Khalatnikov and Schiller, 1993) showed how one can handle the new degree of
freedom introduced by the phase of a complex scalar field. We are now about
to investigate the effect on the wave function and its prediction when a complex
scalar field is coupled to the gravity and the physical metric is chosen to be the
Pauli metric as mentioned before.

Consider a model of a Brans–Dicke scalar field with a globalU (1) charge
coupled to gravity and described by the following action:

S=
∫

d4x
√−γ (εϕ∗ϕ R̃+ γ µν∂µϕ∗∂νϕ) (1.5)
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whereϕ∗ is the conjugate field ofϕ. The Hilbert–Einstein action (1.5) represents
an extension of the “old” Brans–Dicke action (1.1) with a complex scalar field of
the form

ϕ = φ̃√
2

ei θ̃ (1.6)

whereφ̃ is the absolute value of the complex scalar field andθ̃ is its phase. With
this substitution, the action for the charged Brans–Dicke scalar field (1.5) becomes

S=
∫

d4x
√−γ

(
1

2
εφ̃

2
R̃+ 1

2
γ µν∂µφ̃∂νφ̃ + 1

2
φ̃

2
γ µν∂µθ̃∂ν θ̃

)
(1.7)

Up to now, the actions (1.5) and (1.7) are formulated in the Jordan metric.
To obtain the Einstein–Hilbert action of the charged Brans–Dicke theory in the
physical Pauli metric, we introduce a real Brans–Dicke dilaton fieldσ according
to the transformation proposed in Cho’s paper (Cho, 1992).

θ̃ = eασ/2 (1.8)

whereα is the normalization constant which has a value

α =
√

2

2ω + 3
(1.9)

and the Weyl rescaling metric

gµν = eασ

4ω
γµν (1.10)

wheregµν is now called the Pauli metric. Hence, from (1.7) and the generalization
to include the potential term of the scalar field, we obtain the final version of the
action for the charged generalized Brans–Dicke gravity (CGBD gravity)

S=
∫

d4x
√−g

(
R+ 1

2
gµν∂µσ∂νσ + 1

2
gµν∂µθ∂νθ + V(σ )

)
(1.11)

where the potential of the dilaton field takes a form ofV(σ ) = 3, where3 is a
constant energy density, the action reduces to the theory of a charged Brans–Dicke
field in a background with cosmological constant3. Notice that the gravitational
coupling to the dilatonic matter becomes normal and it is now the dilatonic matter
which moves along the geodesic determined by the Pauli metric (Cho, 1992). In
other words, the nonminimal coupling in Jordon metric case becomes now the
minimal coupling of the scalar field in Pauli metric case.

We shall consider the minisuperspace model of the spatially homogenous and
isotropic Universe. The metric of the space-time is suggested to be described by
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the Friedmann–Robertson–Walker line element,

ds2 = −N2 dt2+ a2(t)

(
dr2

1− kr2
+ r 2(dθ2+ sin2 θ dφ2)

)
(1.12)

where as usual notationa(t) is the scale factor of the Universe andk = −1, 0, 1
represents the curvature of the spatial section. In our model, the Universe is as-
sumed to be closed andk is chosen to be+1. Substituting the 4-metric into the
total action (1.11), we obtain

S= 2π2
∫

dt N

(−6aȧ2

N2
+ 6a+ a3

2N2
σ̇ 2+ a3

2N2
θ̇2− a3V(σ )

)
(1.13)

Obviously, the corresponding conjugate momenta are

πa = ∂L

∂ȧ
= −12aȧ

N
(1.14)

πσ = ∂L

∂σ̇
= a3σ̇

N
(1.15)

πθ = ∂L

∂θ̇
= a3θ̇

N
(1.16)

Luca (1994) considered that the phase variableθ is a cyclical one and its
conjugate momentumπθ is a conserved quantity. It is the classical charge of the
Universe which plays the role of the new quasi-fundamental constant.

Q = a3θ̇

N
(1.17)

Consider the canonical formalism and by using the relation (1.17), rewrite
the action (1.13) in the following form:

S= 2π2
∫

dt (πaȧ+ πσ σ̇ − NH) (1.18)

The variation of the action with respect to the lapse functionN giving the
Hamiltonian constraint

∂S

∂N
= 0 (1.19)

H = 0 (1.20)

where the Hamiltonian is explicitly written as

H =
(−π2

a

24
+ π2

σ

2a2
−U (a, σ )

)
= 0 (1.21)

which is the well-known Wheeler–DeWitt equation defined on the minisuperspace
with only a andσ as the variables because the third variableθ is collected in the
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conservation of the momentum conjugate. The functionU (a, σ ) is the potential
term and takes a form

U (a, σ ) = 6a2− Q2

2a2
− a2V(σ ) (1.22)

Before going to have quantization of Hamiltonian constraint and work out the
wave function of the Universe, it is better and illustrative to firstly investigate the
geometry of the Euclidean regions because of the presence of the chargeQ. From
(1.21) we can see that the Euclidean region occurs when the following condition
takes place:

U (a, σ ) > 0 (1.23)

This is the classically forbidden region in which the classical trajectories
cannot enter. The boundary of the Euclidean region is given by

U (a, σ ) = 0 (1.24)

2. GEOMETRY OF EUCLIDEAN REGION AND TWO MODIFIED
VERSIONS OF BOUNDARY CONDITION

This boundary equation will give the form of the Euclidean region in the
plane of minisuperspace variables (a, σ ). We can approximate the regiones of the
potential barrierU (a, σ ) into three parts according to the range of the scale factora:
call Region A for term− Q2

2a2 dominates asa→ 0. Region C for the term−a4V(σ )
dominates asa→∞. The intermediate Region B for the term 6a2 dominates.
Here we can see that for Region A,U (a, σ ) < 0, it is thus a Lorentzian region.
Region B withU (a, σ ) > 0 is a Euclidean region, and Region C withU (a, σ ) < 0
is a Lorentzian one again. Notice that the presence of the chargeQ modifies
the Euclidean region different with the usual case, that is, no Lorentzian region
asa→ 0 before the Euclidean region. Hence and therefore, the superpotential
U (a, σ ) displays a new and interesting feature in the minisuperspace.

In contrast with the picture of “tunneling from nothing” and with the “no-
boundary condition” for the wave function of the Universe, we have ones which can
go into the Euclidean region from one side and go out from the other. These features
require some redefinition (Kamenshciket al., 1995) of the original Vilenkin’s
“tunneling” boundary conditions (Vilenkin, 1984, 1988a,b) and Hartle–Hawking’s
no-boundary condition (Hartle, 1991; Hartle and Hawking, 1983). First, in the
tunneling boundary condition approach, there will be no picture corresponding to
“tunneling from nothing.” The wave function of the Universe will evolve along the
scale factor direction from an initial Lorentzian region to a final Lorentzian region,
bypassing a Euclidean region. Thus the authors extends the Vilenkin’s boundary
condition to the prescription of taking only the outgoing mode (expanding) of
the wave function of the Universe in the Lorentzian region. We will call it the
Vilenkin-like boundary condition.
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It can be observed in the superpotential (1.22) that the presence of the charge
term Q prevents the regularity of matter fields ata = 0. Again we need an ex-
tension of the original Hartle–Hawking proposal, that is, the Hartle–Hawking-like
boundary condition that the wave function of the Universe should be an exponen-
tially growing function of the scale factora in the classically forbidden region.
In the following we will make use of these two modified versions of boundary
condition to apply in our case of charged generalized Brans–Dicke gravity.

3. WAVE FUNCTIONS OF THE MODEL

The lapse functionN is not of physical relevance classically since we can
rescale the proper time parameterdτ = N dt or choose it to beN = 1. Write the
Lagrangian depending only on two minisuperspace variablesa andσ , and their
derivatives,

L = (−6ȧ2a+ 6a)+ 1

2
a3σ̇ 2− Q2

2a3
− a3V(σ ) (3.1)

By using the Lagrangian (3.1) and the Dirac’s quantizing procedure, the
operator version of the Hamiltonian constraint (1.21) becomes

Ĥ9 =
(
∂2

∂a2
− 1

a2

∂2

∂σ 2
−
(

6a2− Q2

2a2
− a4V(σ )

))
9 = 0 (3.2)

If Q = 0, the case for the real scalar field will be restored. We are going to look
into the case whereQ 6= 0. As the scale factora goes from zero to infinity, some
solution to the Wheeler–DeWitt equation will cross the initial classical allowed
Lorentzian region withU < 0, and then the classically forbidden Euclidean region
with U > 0, and finally the classically allowed region again.

We can study the qualitative property by assuming the “slow-rolling approxi-
mation” (Kolb and Turner, 1990) of inflationary cosmology. In this approximation,
the second derivatives of the wave function9 with respect to the dilaton field
σ, ∂

29
∂σ 2 ≈ 0. Then the Wheeler–DeWitt Eq. (3.2) will be of the form

Ĥ9 =
(
∂2

∂a2
−U (a, σ )

)
= 0 (3.3)

The general solution to Eq. (3.3) in the semiclassical WKB approximation in
the range (a0, a) is a linear combination of the terms.

9 ∝ exp

(
±i
∫ a

a0

(−U )1/2da′
)

(3.4)

The positive and negative signs characterize the ingoing and outgoing waves
respectively. We will illustrate in the following:πa9 > 0 (outgoing) for negative
sign whileπa9 < 0 (ingoing) for positive sign. Actually, the outgoing wave is de-
fined as expanding Universe and ingoing wave as contracting Universe. Although
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we cannot evaluate the integral in (3.4) exactly, it is possible to approximate the
analytic solutions in the respective regions we have just defined before. Notice that
the boundary between Region A and Region B is ata2

1 ≈ Q√
12

, whereas the bound-
ary between Region B and Region C is ata2

2 ≈ 6
V(σ ) . Let us consider separately

the three regions.
Region A: The superpotential is approximated toU (a, σ ) ≈ − Q

2a2 and (3.4)
gives in the range (a, a1)

9A ∝ exp

(
±i

Q√
2

ln

(
a

a1

))
(3.5)

This is an oscillating wave function as expected in Lorentzian region. Region B
and Region C can be solved together.U (a, σ ) ≈ 6a2− V(σ )a4

9BC ∝ exp

(
± (6− V(σ )a2)3/2− (6− V(σ )a2

1

)3/2
3V(σ )

)
(3.6)

Whena2 < a2
2 ≈ 6

V(σ ) , which is under the barrier, the wave function is of ex-
ponential form whereas an oscillating one fora2 > a2

2 ≈ 6
V(σ ) which is in classical

region.
Imposing the Vilenkin-like boundary condition on the wave function, only

classically expanding solution is to be taken at the Euclidean–Lorentzian bound-
ary. It selects the outgoing wave in the Lorentzian region. On the other hand,
the Hartle–Hawking-like boundary condition will result in the exponentially in-
creasing solution under the barrier. It selects the outgoing wave in the classically
forbidden region. To be precise in the following, by using the WKB connection
formula, we will write down the wave functions in different regions explicitly.

Imposing the Vilenkin-like boundary condition implies that only an outgoing
wave should be present in the classically allowed region:

Region A:

9A ∝ exp

(
−i

Q√
2

ln

(
a

a1

))
(3.7)

Region B:

9B ∝ exp

(
(6− V(σ )a2)3/2− (6− V(σ )a2

1

)3/2
3V(σ )

)

− i

2
exp

(
− (6− V(σ )a2)3/2− (6− V(σ )a2

1

)3/2
3V(σ )

)
(3.8)

The first term is of decreasing exponential while the second term is of growing
exponential where they have comparable amplitudes at the nucleation pointa = a2,
but away from that point the decreasing exponential dominates.
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Region C:

9C ∝ exp

(
− i (V(σ )a2− 6)3/2− (6− V(σ )a2

1

)3/2
3V(σ )

)
(3.9)

As we can see, WKB solution is proportional to the forme−i S whereS=
(V(σ )a2− 6)3/2 it selects the outgoing mode at the boundary of the Euclidean
region. Imposing the Hartle–Hawking-like boundary condition which is specified
by requiring that exp(−SE) in the Euclidean underbarrier region:

Region A:

9A ∝ exp

(
i

Q√
2

ln

(
a

a1

))
− exp

(
−i

Q√
2

ln

(
a

a1

))
(3.10)

Region B:

9B ∝ exp

(
− (6− V(σ )a2)3/2− (6− V(σ )a2

1

)3/2
3V(σ )

)
(3.11)

Region C:

9C ∝ exp

(
i (V(σ )a2− 6)3/2− (6− V(σ )a2

1

)3/2
3V(σ )

)

− exp

(
− i (V(σ )a2− 6)3/2− (6− V(σ )a2

1

)3/2
3V(σ )

)
(3.12)

One can notice that the wave function in the complex scalar field case is not
much different with the real scalar field case excepta1 6= 0. Having obtained the
WKB wave functions in different regions for these two boundary conditions, we
are now at a position to compare their corresponding probabilities of nucleation
by applying a sensible probability measure.

4. PREDICTIONS OF CGBD MODEL

The final task we have to do on this model is to extract prediction from it.
Let us now compare the no-boundary and tunneling wave functions. Firstly, it is
observed that both wave functions are peaked about the same set of solutions to
the field equations, namely those satisfying the Hamilton-Jacobi equation.

∂S

∂t
+U (a, σ ) = 0 (4.1)

These solutions are initially inflationary witha ∝ exp(
√

V(σ )t). Although all
those solutions undergo some inflation, the amount by which they inflate depends
on V(σ ). The probability will give the distribution of the initial values of the
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nucleated Universe and the tunneling probability can be estimated as for Vilenkin-
like boundary condition,

d PT ∝ exp

−2
(
6− V(σ ) Q√

12

)3/2
3V(σ )

 (4.2)

and for Hartle–Hawking-like boundary condition,

d PHH ∝ exp

+2
(
6− V(σ ) Q√

12

)3/2
3V(σ )

 (4.3)

These can be interpreted as the probability distributions for the initial values
of V(σ ) in the nucleated Universe. The probabilities for these two approaches
also differ by a crucial sign in front of it. We can see that if there is no charge
Q = 0, the result will resemble to the case of real scalar field. Once it nucleates,
the Universe immediately begins a de Sitter inflationary expansion. In slow-rolling
approximation ˙σ ≈ 0, V(σ )→ 3 where the vacuum energy density dominates.
In order for sufficient inflation to solve the problems arise in hot big bang theory,
the vacuum energy density of the scalar field should be large enough to drive
the bubble into an exponential expansion. Below we will illustrate the probability
distributions for two redefined versions of boundary conditions respectively in
Figs. 1 and 2. Alongside, Figs. 3 and 4 for the probability distributions in the

Fig. 1. The probability distribution of the wave function in Vilenkin-like boundary condition. It gives
a large probability for large value of potential of dilaton fieldV(σ ).
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Fig. 2. The probability distribution of the wave function in Hartle–Hawking-like boundary condition.
It gives a low probability for large value of potential of dilaton fieldV(σ ).

Fig. 3. The probability distribution of the wave function in the original Vilenkin boundary condition.
It gives a large probability for large value of potential of dilaton fieldV(σ ).
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Fig. 4. The probability distribution of the wave function in the original Hartle–Hawking boundary
condition. It gives a low probability for large value of potential of dilaton fieldV(σ ).

usual real scalar field are shown in parallel. We notice that in our case of charged
generalized Brans–Dicke gravity, the probability distributions are very similar to
the case of real scalar field. This is mainly due to the fact that the term containing
the charge in the potential is independent of the dilaton scalar field in our case.
Thus, even in the presence of the charge term the probability distributions are not
affected very much compared with the original real scalar field.

As explained before, the Vilenkin-like boundary condition predicts that the
Universe is most likely to nucleate with the largest possible vacuum potential
energy and thus results in a larger amount of inflation. This is a welcome news of
initial condition for inflation. In other words, in charged generalized Brans–Dicke
gravity in which a quasi-fundamental constant chargeQ is introduced, inflation is
favored by the Vilenkin-like boundary condition. On the other hand, the Hartle–
Hawking-like boundary condition, because of the opposite sign in the probability
distribution, a crucial difference, predicts initial conditions nucleating with the
smallest possible vacuum energy density, which disfavors inflation.

5. CONCLUSION AND OUTLOOK

The second law of thermodynamics tells us that the Universe evolves from
more ordered to more disordered states. It suggests that the Universe has started
in a very nonrandom configuration of high order and symmetry. But, what is the
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physical principle that determines the initial state of the Universe? Theory of in-
flation provides some solutions to the classic puzzles in the standard cosmology.
Nevertheless, the most crucial requirement for such sufficient inflation is a large
vacuum energy density presented at the beginning of the inflationary era. This
is assumed rather than predicted. In this thesis, we have reviewed the attempts to
understand the initial conditions of the Universe in the framework of quantum cos-
mology, namely, Vilenkin’s tunneling proposal and Hartle–Hawking no-boundary
proposal. However, because of the infinite dimension of superspace, neither of
these two approaches have yet been translated beyond minisuperspace.

The Brans–Dicke theory is used throughout the thesis as an application of
quantum cosmology. We have used the Pauli metric as the physical metric and
obtain the Lagrangian in Pauli frame. Also, aU (1) charge group is coupled to
the scalar field. It predicts the right initial conditions of the inflation Universe in
Vilenkin’s boundary proposal. In quantum cosmology with nonlinear Born–Infeld
scalar field, Vilenkin’s tunneling approach predicts that the Universe nucleates
with the largest possible vacuum energy and interactions of particles of the non-
linear scalar field are the largest possible, giving out the right initial condition for
inflation (Harko and Cheng, 1999). it seems at this moment that both proposals are
still under criticism. Different ones are applicable to different cases. No one can
fully discriminate between these two ideas. We should be aware that the two wave
functions are far from being rigorously defined mathematical objects. Except for
the simplest models, the actual calculations of these wave functions involve addi-
tional assumptions which may appear reasonable, but are not really well justified
(Vilenkin, 1998). Actually, quantum cosmology can only give a probability distri-
bution for the initial states of the Universe and, on the other hand, we have only one
Universe. We could guess the best that we are now living in a “typical” Universe
which has started somewhere near the maximum of the probability distribution.
This is really an issue of interpretation of wave function.

In the prescription of no-boundary condition, the Euclidean actionSE(gµν , φ)
for gravitation coupled to matter field is unbounded below in general. Hence the
Feymann sum over the compact manifolds will be divergent. Hartle and Hawking
(1983) then proposed that the sum should be taken over a class of complex geo-
metries, not pure Lorentzian, nor pure Euclidean. A complex contour is essential in
no-boundary condition. However, many different complex convergent contours are
possibly available, and correspondingly there are many different no-boundary wave
functions. These will result in predictions of many different Universes. However,
we still lack a principle for fixing this wave function of the Universe.

We state the last outlook in quantum cosmology as a final remark. Extracting
the predictions of initial conditions and comparing them with observations is a
central problem in quantum cosmology. However, the probabilities for those large
scale features of the Universe have been explored in highly simplified models only
and in limited regions of the configuration space. Among them, the spectrum of
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initial quantum fluctuations is a quite successful achievement of quantum cosmo-
logy. But much has to be done to extend the theory to the whole of configuration
space with greater accuracy, generality, and more precise quantum mechanical
interpretation. These are some problems for the twenty-first century from Hartle’s
paper,Quantum Cosmology: Problems for the 21st century at 1998.
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